68 research outputs found

    Pharmacodynamic Effects of a 6-Hour Regimen of Enoxaparin in Patients Undergoing Primary Percutaneous Coronary Intervention (PENNY PCI Study)

    Get PDF
    Delayed onset of action of oral P2Y₁₂ inhibitors in ST-elevation myocardial infarction (STEMI) patients may increase the risk of acute stent thrombosis. Available parenteral anti-thrombotic strategies, to deal with this issue, are limited by added cost and increased risk of bleeding. We investigated the pharmacodynamic effects of a novel regimen of enoxaparin in STEMI patients undergoing primary percutaneous coronary intervention (PPCI). Twenty patients were recruited to receive 0.75 mg/kg bolus of enoxaparin (pre-PPCI) followed by infusion of enoxaparin 0.75 mg/kg/6 h. At four time points (pre-anti-coagulation, end of PPCI, 2–3 hours into infusion and at the end of infusion), anti-Xa levels were determined using chromogenic assays, fibrin clots were assessed by turbidimetric analysis and platelet P2Y₁₂ inhibition was determined by VerifyNow P2Y₁₂ assay. Clinical outcomes were determined 14 hours after enoxaparin initiation. Nineteen of 20 patients completed the enoxaparin regimen; one patient, who developed no-reflow phenomenon, was switched to tirofiban after the enoxaparin bolus. All received ticagrelor 180 mg before angiography. Mean (± standard error of the mean) anti-Xa levels were sustained during enoxaparin infusion (1.17 ± 0.06 IU/mL at the end of PPCI and 1.003 ± 0.06 IU/mL at 6 hours), resulting in prolonged fibrin clot lag time and increased lysis potential. Onset of platelet P2Y₁₂ inhibition was delayed in opiate-treated patients. No patients had thrombotic or bleeding complications. In conclusion, enoxaparin 0.75 mg/kg bolus followed by 0.75 mg/kg/6 h provides sustained anti-Xa levels in PPCI patients. This may protect from acute stent thrombosis in opiate-treated PPCI patients who frequently have delayed onset of oral P2Y₁₂ inhibition

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    HFE gene mutations increase the risk of coronary heart disease in women

    Get PDF
    The purpose of the present study is to examine HFE gene mutations in relation to newly diagnosed (incident) coronary heart disease (CHD). In a population-based follow-up study of 7,983 individuals aged 55 years and older, we compared the risk of incident CHD between HFE carriers and non-carriers, overall and stratified by sex and smoking status. HFE mutations were significantly associated with an increased risk of incident CHD in women but not in men (hazard ratio [HR] for women = 1.7, 95% confidence interval [CI] 1.2–2.4 versus HR for men = 0.9, 95% CI 0.7–1.2). This increased CHD risk associated with HFE mutations in women was statistically significant in never smokers (HR = 1.8, 95% CI 1.1–2.8) and current smokers (HR = 3.1, 95% CI 1.4–7.1), but not in former smokers (HR = 1.3, 95% CI 0.7–2.4). HFE mutations are associated with increased risk of incident CHD in women

    Dark Matter in the Milky Way's Dwarf Spheroidal Satellites

    Full text link
    The Milky Way's dwarf spheroidal satellites include the nearest, smallest and least luminous galaxies known. They also exhibit the largest discrepancies between dynamical and luminous masses. This article reviews the development of empirical constraints on the structure and kinematics of dSph stellar populations and discusses how this phenomenology translates into constraints on the amount and distribution of dark matter within dSphs. Some implications for cosmology and the particle nature of dark matter are discussed, and some topics/questions for future study are identified.Comment: A version with full-resolution figures is available at http://www.cfa.harvard.edu/~mwalker/mwdsph_review.pdf; 70 pages, 22 figures; invited review article to be published in Vol. 5 of the book "Planets, Stars, and Stellar Systems", published by Springe

    Relativistic Binaries in Globular Clusters

    Get PDF
    Galactic globular clusters are old, dense star systems typically containing 10\super{4}--10\super{7} stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of hard binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct {\it N}-body integrations and Fokker--Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.Comment: 88 pages, 13 figures. Submitted update of Living Reviews articl

    Biomarkers for nutrient intake with focus on alternative sampling techniques

    Full text link

    The Golgi apparatus in the endomembrane-rich gastric parietal cells exist as functional stable mini-stacks dispersed throughout the cytoplasm

    Get PDF
    BACKGROUND INFORMATION: Acid-secreting gastric parietal cells are polarized epithelial cells that harbour highly abundant and specialized, H+,K+ ATPase-containing, tubulovesicular membranes in the apical cytoplasm. The Golgi apparatus has been implicated in the biogenesis of the tubulovesicular membranes; however, an unanswered question is how a typical Golgi organization could regulate normal membrane transport within the membrane-dense cytoplasm of parietal cells. RESULTS: Here, we demonstrate that the Golgi apparatus of parietal cells is not the typical juxta-nuclear ribbon of stacks, but rather individual Golgi units are scattered throughout the cytoplasm. The Golgi membrane structures labelled with markers of both cis- and trans-Golgi membrane, indicating the presence of intact Golgi stacks. The parietal cell Golgi stacks were closely aligned with the microtubule network and were shown to participate in both anterograde and retrograde transport pathways. Dispersed Golgi stacks were also observed in parietal cells from H+,K+ ATPase-deficient mice that lack tubulovesicular membranes. CONCLUSIONS: These results indicate that the unusual organization of individual Golgi stacks dispersed throughout the cytoplasm of these terminally differentiated cells is likely to be a developmentally regulated event

    Translocator positron-emission tomography and magnetic resonance spectroscopic imaging of brain glial cell activation in multiple sclerosis.

    Get PDF
    BACKGROUND: Multiple sclerosis (MS) is characterised by a diffuse inflammatory response mediated by microglia and astrocytes. Brain translocator protein (TSPO) positron-emission tomography (PET) and [myo-inositol] magnetic resonance spectroscopy (MRS) were used together to assess this. OBJECTIVE: To explore the in vivo relationships between MRS and PET [(11)C]PBR28 in MS over a range of brain inflammatory burden. METHODS: A total of 23 patients were studied. TSPO PET imaging with [(11)C]PBR28, single voxel MRS and conventional magnetic resonance imaging (MRI) sequences were undertaken. Disability was assessed by Expanded Disability Status Scale (EDSS) and Multiple Sclerosis Functional Composite (MSFC). RESULTS: [(11)C]PBR28 uptake and [ myo-inositol] were not associated. When the whole cohort was stratified by higher [(11)C]PBR28 inflammatory burden, [ myo-inositol] was positively correlated to [(11)C]PBR28 uptake (Spearman's ρ = 0.685, p = 0.014). Moderate correlations were found between [(11)C]PBR28 uptake and both MRS creatine normalised N-acetyl aspartate (NAA) concentration and grey matter volume. MSFC was correlated with grey matter volume (ρ = 0.535, p = 0.009). There were no associations between other imaging or clinical measures. CONCLUSION: MRS [ myo-inositol] and PET [(11)C]PBR28 measure independent inflammatory processes which may be more commonly found together with more severe inflammatory disease. Microglial activation measured by [(11)C]PBR28 uptake was associated with loss of neuronal integrity and grey matter atrophy
    • 

    corecore